Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolution
نویسندگان
چکیده
We introduce a simple, non-linear mention-ranking model for coreference resolution that attempts to learn distinct feature representations for anaphoricity detection and antecedent ranking, which we encourage by pre-training on a pair of corresponding subtasks. Although we use only simple, unconjoined features, the model is able to learn useful representations, and we report the best overall score on the CoNLL 2012 English test set to date.
منابع مشابه
Joint Learning for Event Coreference Resolution
While joint models have been developed for many NLP tasks, the vast majority of event coreference resolvers, including the top-performing resolvers competing in the recent TAC KBP 2016 Event Nugget Detection and Coreference task, are pipelinebased, where the propagation of errors from the trigger detection component to the event coreference component is a major performance limiting factor. To a...
متن کاملGlobal Learning of Noun Phrase Anaphoricity in Coreference Resolution via Label Propagation
Knowledge of noun phrase anaphoricity might be profitably exploited in coreference resolution to bypass the resolution of non-anaphoric noun phrases. However, it is surprising to notice that recent attempts to incorporate automatically acquired anaphoricity information into coreference resolution have been somewhat disappointing. This paper employs a global learning method in determining the an...
متن کاملLearning Noun Phrase Anaphoricity to Improve Conference Resolution: Issues in Representation and Optimization
Knowledge of the anaphoricity of a noun phrase might be profitably exploited by a coreference system to bypass the resolution of non-anaphoric noun phrases. Perhaps surprisingly, recent attempts to incorporate automatically acquired anaphoricity information into coreference systems, however, have led to the degradation in resolution performance. This paper examines several key issues in computi...
متن کاملNarrowing the Modeling Gap: A Cluster-Ranking Approach to Coreference Resolution
Traditional learning-based coreference resolvers operate by training the mention-pair model for determining whether two mentions are coreferent or not. Though conceptually simple and easy to understand, the mention-pair model is linguistically rather unappealing and lags far behind the heuristic-based coreference models proposed in the pre-statistical NLP era in terms of sophistication. Two ind...
متن کاملLearning Noun Phrase Anaphoricity to Improve Coreference Resolution: Issues in Representation and Optimization
Knowledge of the anaphoricity of a noun phrase might be profitably exploited by a coreference system to bypass the resolution of non-anaphoric noun phrases. Perhaps surprisingly, recent attempts to incorporate automatically acquired anaphoricity information into coreference systems, however, have led to the degradation in resolution performance. This paper examines several key issues in computi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015